Sensitivity of 89Zr-labeled anti-CD8 minibody for PET imaging of infiltrating CD8+ T cells

Tove Olafsen, Ziyue Karen Jiang, Jason Romero, Charles Zamplia, Filippo Marchioni, Green Zhang, Michael Torgov, Daulet Satpayev, Jean Gudas
ImaginAb Inc., Inglewood, CA, USA

Abstract

Background: The ability to monitor CD8 positive tumor infiltrating lymphocytes (TILs) in vivo is important for evaluating response to immunotherapies and assisting in the development of more effective immune cell targeted single and combination therapies. "ImmunopET" imaging of tumor infiltrating T cells can provide a specific and sensitive modality to aid selection of patients for specific immunotherapy regimens and determine whether the therapy is working. Here, we report initial results to define the number of CD8+ T cells that can be detected with 89Zr-Df-IAB22M2C, an anti-CD8 immunePET probe, using different animal models.

Methods: IAB22M2C, a humanized anti-CD8 minibody, was conjugated with destabilixamine (Dx) and radiolabeled with 89Zr. NOD scid mice were implanted with varying ratios of CD8+ T cells and tumor cell adjuvants either intramuscularly (IM) without Matrigel or subcutaneously (SC) with Matrigel. One or six days later, CD8+ T cells were visualized with 89Zr-Df-IAB22M2C. The same probe was used to detect CD8+ T cells in NSG mice engrafted with human PBMCs for 1 and 4 weeks to monitor the temporal progression of Graft versus Host Disease (GvHD).

Results: CD8+ T cells implanted in the muscles of mice were imaged one day later and SC implanted Matrigel plugs imaged 6 days later. Both approaches yielded similar results and indicated that the lower limit of detection was between 1.6-4 million CD8+ T cells in a volume of ~480 mm3 in the presence of normal tissue background activity. The sensitivity of detection increased 8-fold when ex vivo radiolabeled CD8+ T cells were implanted SC with Matrigel. NSG mice engrafted with human PBMCs provide a reliable model for xenogeneic T cell driven Graft versus Host Disease (GvHD). Human CD8+ T cells were readily detectable in the spleens of mice with 1 week post PBMC engraftment using 89Zr-Df-IAB22M2C. As GvHD progressed 4 weeks later, expansion and trafficking of the engrafted T cells to extra-lymphoid tissues including lungs could be followed. Terminal biodegradation showed a 2-3 fold increase in radionuclide uptake in lungs by week 4 post-engraftment; a result that was confirmed by IHC analysis. T cell enumeration and IHC analyses are in progress to further define the sensitivity range using an optimal dose and specific activity of 89Zr-Df-IAB22M2C.

Conclusion: These studies show that the lower limit of detection of CD8+ T cell detection by 89Zr-Df-IAB22M2C is between 1.6-4 million cells in the presence of normal tissue background activity and that the probe can be used to monitor CD8+ T cell trafficking in a GvHD model in vivo. 89Zr-Df-IAB22M2C has sensitivities properties that may enable the detection of CD8+ T cells in human tumors. Clinical trials with 89Zr-Df-IAB22M2C in melanoma patients will commence later this year.

Summary and Conclusion

> A humanized anti-CD8 Mab (IAB22M2C) was generated, conjugated with Df and shown to retain high affinity and specificity for binding to human CD8 positive T cells
> Ex vivo and in absence of normal tissue background activity the lower limit of detection was 0.4 million CD8+ T cells
> CD8+ T cells implanted in the muscles or in Matrigel plugs indicated that the lower limit of detection was between 1.6 and 4 million CD8+ T cells in the presence of normal tissue background activity
> In a GvHD model, rapid expansion of CD8+ T cells occurred from 1 to 3 weeks with tissue infiltration that allowed detection of approximately 1 million CD8+ T cells in 0.5 g lung and as few as 0.16 million CD8+ T cells in 50 mg of spleen tissue
> CD8+ TILs could be visualized in syngeneic mouse tumors following treatment with check-point inhibitors using a surrogate and human anti-CD8 Mab
> 89Zr-Df-IAB22M2C is a sensitive and promising tracer for detecting human CD8 positive immune cells in vivo

Preliminary imaging, safety and toxicology studies will enable the the start of clinical studies in Q3 2016.